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Disclaimer

¢ Rust is under heavy development.

e The things described in this talk may not be true
tomorrow.

e What | discuss and how | present issues reflect my
personal biases in language design.
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Goals
What do we want in a programming language?

Fast: generates efficient machine code

Safe: type system provides guarantees that prevent
certain bugs

o Concurrent: easy to build concurrent programs and to
take advantage of parallelism

“Systemsy": fine grained control, predictable performance
characteristics
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Goals
What do have?

Firefox is in C++, which is Fast and Systemsy

ML is (sometimes) fast and (very) safe

Erlang is safe and concurrent

Haskell is (sometimes) fast, (very) safe, and concurrent

Java and C# are fast and safe
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Rust

a systems language

pursuing the trifecta

safe, concurrent, fast
-lkuper
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Design
Type system features

Algebraic data type and pattern matching (no null
pointers!)

Polymorphism: functions and types can have generic type
parameters

Type inference on local variables

A somewhat idiosyncratic typeclass system (“traits”)

Data structures are immutable by default

e Region pointers allow safe pointers into non-heap objects
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Design
Other features

o Lightweight tasks with no shared state
o Control over memory allocation

e Move semantics, unique pointers
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Design
... What?

“It's like C++ grew up, went to grad school, started dating
Haskell, and is sharing an office with Erlang.”
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Status
rustc

¢ Self-hosting rust compiler
e Uses LLVM as a backend

¢ Handles polymorphism and typeclasses by
monomorphizing
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Status
The catch

Not quite ready for prime time

Lots of bugs and exposed sharp edges

Language still evolving

But getting really close!
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Traits

What are traits?

o Traits are interfaces that specify a set of methods for
types to implement

e Functions can be parameterized over types that
implement a certain trait

o Like typeclasses in Haskell
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Traits

Trait example

trait ToStr {
fn to_str (&self) -> “str;
}
impl ToStr for int {
fn to_str(&self) -> “str { int::to_str(*self) 7}
}

fn exclaim<T: ToStr>(x: T) -> “str {
X.to_str() + ~"iv
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Traits
More trait example

impl<T: ToStr> ToStr for ~[T] {
fn to_str (&self) -> “str {
let strs = self.map(lx| x.to_str());
fmt ! (" [%s]", strs)

impl<T: ToStr> ToStr for Option<T> {
fn to_str (&self) -> “str {
match self {
&None => ""None'",
&Some (ref t) => fmt!("Some(¥%s)", t.to_str
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Default methods
A solution

e Sometimes you have a method that has a straightforward
“default”

e But want to be able to override it



INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS

OTHER
o 000 000 [e]e}
00 00 0®000
o 0000000

Default methods
A simple example: equality

trait Eq {

fn eq(&self, other: &Self) -> bool;
fn ne(&self, other: &Self) -> bool {

!'self.eq(other)
}

CONCLUSION
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Default methods
An implementation without overriding

e Implementations can choose to use the default
implementation...

impl Eq for int {
fn eq(&self, other: &int) -> bool {
*self == *other

}
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Default methods
An implementation with overriding

e ... or to override it

impl Eq for int {
fn eq(&self, other: &int) -> bool {

*self == x*xother

¥

fn ne(&self, other: &Self) -> bool {
*self != xother

}
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CONCLUSION

Default methods
Why override?

e Overriding can be useful for performance

e And is sometimes semantically necessary (the default
implementation is not correct for floating point)
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Problems

The state at the start of the summer

e The above examples worked...

e But anything much more complicated didn't
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Problems
Type parameters...

trait A<T> {

fn g(&self, x: T) -> T { x }
}
impl A<int> for int { }

fn main () {

assert!(0i.g(2i) == 2i);
}

o Triggered an ICE

OTHER
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Problems

Type parameters...

trait A<T> {

fn g(&self, x: T) -> T { x }
}
impl A<int> for int { }

fn main () {
assert!(0i.g(2i) == 2i);
}
e Triggered an ICE

o Need to mediate between the different type parameters...
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CONCLUSION

Problems
Calling a default method from another one

trait Cat {
fn meow(&self) -> bool;

fn scratch(&self) -> bool { self.purr() }
fn purr (&self) -> bool { true }

e Triggered an ICE
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Problems

And a bunch of related ones

Calling a default method through a type parameters
Packaging up an object with a default method

Originally fixed by searching for default methods in more
cases

Eventually fixed by reworking how method lookup is done
in trans
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o Couldn’t call default methods on a trait in another library

e Some false starts here - the library code is scary

» Solution is to properly export information about default

methods
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Problems
Cross-crate calls

CONCLUSION

Couldn’t call default methods on a trait in another library

Some false starts here - the library code is scary

Solution is to properly export information about default

methods

Required a major rework of what information we track

about impls
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Problems
Interacting with trait bounds

e Trait bounds on a trait's type params didn't work

e Calling a function bounded over the trait didn't work
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Problems
Supertraits

Couldn’t call methods on a supertrait if there was any
polymorphism

Major rework to how supertrait calls are handled

Needed to actually check that an impl implemented
supertraits...

Which required improving the trait resolution algorithm...
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Other things
Other projects

o Improved the trait resolution algorithm, removing the
need for a hoky workaround in iterators

o Fixed some pattern matching codegen bugs

e Fixing some problems with objects and supertraits

CONCLUSION
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Other things
Fized a lot of bugs

42410, #3121, #4055, #4099, #4102, #4102, #4103,

#4350, #4396, #4946, #6554, #6868, #6909, #6959,

416967, #7183, #7266, #7278, 47295, #7301, #7341,

47460, #7481, #7536, #7569, #7571, #7661, #7675,
47862
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Conclusion

o Rust is a new systems language out of Mozilla Research
that is designed to be fast, concurrent, and safe

e | worked on a bunch of different stuff on it this summer
e Default methods now work!
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