
Introduction Rust Fixing Default Trait Methods Other Conclusion

Default Methods in Rust

Michael Sullivan

August 14, 2013

1 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Outline

Introduction

Rust

Fixing Default Trait Methods

Other

2 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Disclaimer

� Rust is under heavy development.

� The things described in this talk may not be true
tomorrow.

� What I discuss and how I present issues reflect my
personal biases in language design.

3 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Disclaimer

� Rust is under heavy development.

� The things described in this talk may not be true
tomorrow.

� What I discuss and how I present issues reflect my
personal biases in language design.

3 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Disclaimer

� Rust is under heavy development.

� The things described in this talk may not be true
tomorrow.

� What I discuss and how I present issues reflect my
personal biases in language design.

3 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Disclaimer

� Rust is under heavy development.

� The things described in this talk may not be true
tomorrow.

� What I discuss and how I present issues reflect my
personal biases in language design.

3 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Goals
What do we want in a programming language?

� Fast: generates efficient machine code

� Safe: type system provides guarantees that prevent
certain bugs

� Concurrent: easy to build concurrent programs and to
take advantage of parallelism

� “Systemsy”: fine grained control, predictable performance
characteristics

4 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Goals
What do we want in a programming language?

� Fast: generates efficient machine code

� Safe: type system provides guarantees that prevent
certain bugs

� Concurrent: easy to build concurrent programs and to
take advantage of parallelism

� “Systemsy”: fine grained control, predictable performance
characteristics

4 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Goals
What do we want in a programming language?

� Fast: generates efficient machine code

� Safe: type system provides guarantees that prevent
certain bugs

� Concurrent: easy to build concurrent programs and to
take advantage of parallelism

� “Systemsy”: fine grained control, predictable performance
characteristics

4 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Goals
What do we want in a programming language?

� Fast: generates efficient machine code

� Safe: type system provides guarantees that prevent
certain bugs

� Concurrent: easy to build concurrent programs and to
take advantage of parallelism

� “Systemsy”: fine grained control, predictable performance
characteristics

4 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Goals
What do we want in a programming language?

� Fast: generates efficient machine code

� Safe: type system provides guarantees that prevent
certain bugs

� Concurrent: easy to build concurrent programs and to
take advantage of parallelism

� “Systemsy”: fine grained control, predictable performance
characteristics

4 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Goals
What do have?

� Firefox is in C++, which is Fast and Systemsy

� ML is (sometimes) fast and (very) safe

� Erlang is safe and concurrent

� Haskell is (sometimes) fast, (very) safe, and concurrent

� Java and C# are fast and safe

5 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Goals
What do have?

� Firefox is in C++, which is Fast and Systemsy

� ML is (sometimes) fast and (very) safe

� Erlang is safe and concurrent

� Haskell is (sometimes) fast, (very) safe, and concurrent

� Java and C# are fast and safe

5 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Goals
What do have?

� Firefox is in C++, which is Fast and Systemsy

� ML is (sometimes) fast and (very) safe

� Erlang is safe and concurrent

� Haskell is (sometimes) fast, (very) safe, and concurrent

� Java and C# are fast and safe

5 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Goals
What do have?

� Firefox is in C++, which is Fast and Systemsy

� ML is (sometimes) fast and (very) safe

� Erlang is safe and concurrent

� Haskell is (sometimes) fast, (very) safe, and concurrent

� Java and C# are fast and safe

5 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Goals
What do have?

� Firefox is in C++, which is Fast and Systemsy

� ML is (sometimes) fast and (very) safe

� Erlang is safe and concurrent

� Haskell is (sometimes) fast, (very) safe, and concurrent

� Java and C# are fast and safe

5 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Rust

a systems language
pursuing the trifecta
safe, concurrent, fast

-lkuper

6 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Rust

Design
Status

7 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Design
Type system features

� Algebraic data type and pattern matching (no null
pointers!)

� Polymorphism: functions and types can have generic type
parameters

� Type inference on local variables

� A somewhat idiosyncratic typeclass system (“traits”)

� Data structures are immutable by default

� Region pointers allow safe pointers into non-heap objects

8 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Design
Other features

� Lightweight tasks with no shared state

� Control over memory allocation

� Move semantics, unique pointers

9 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Design
...What?

“It’s like C++ grew up, went to grad school, started dating
Haskell, and is sharing an office with Erlang.”

10 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Status
rustc

� Self-hosting rust compiler

� Uses LLVM as a backend

� Handles polymorphism and typeclasses by
monomorphizing

11 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Status
rustc

� Self-hosting rust compiler

� Uses LLVM as a backend

� Handles polymorphism and typeclasses by
monomorphizing

11 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Status
rustc

� Self-hosting rust compiler

� Uses LLVM as a backend

� Handles polymorphism and typeclasses by
monomorphizing

11 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Status
The catch

� Not quite ready for prime time

� Lots of bugs and exposed sharp edges

� Language still evolving

� But getting really close!

12 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Status
The catch

� Not quite ready for prime time

� Lots of bugs and exposed sharp edges

� Language still evolving

� But getting really close!

12 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Status
The catch

� Not quite ready for prime time

� Lots of bugs and exposed sharp edges

� Language still evolving

� But getting really close!

12 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Status
The catch

� Not quite ready for prime time

� Lots of bugs and exposed sharp edges

� Language still evolving

� But getting really close!

12 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Traits
What are traits?

� Traits are interfaces that specify a set of methods for
types to implement

� Functions can be parameterized over types that
implement a certain trait

� Like typeclasses in Haskell

13 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Traits
Trait example

trait ToStr {

fn to_str (&self) -> ~str;

}

impl ToStr for int {

fn to_str (&self) -> ~str { int:: to_str (*self) }

}

fn exclaim <T: ToStr >(x: T) -> ~str {

x.to_str () + ~"!"

}

14 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Traits
More trait example

impl <T: ToStr > ToStr for ~[T] {

fn to_str (&self) -> ~str {

let strs = self.map(|x| x.to_str ());

fmt!("[%s]", strs)

}

}

impl <T: ToStr > ToStr for Option <T> {

fn to_str (&self) -> ~str {

match self {

&None => ~"None",

&Some(ref t) => fmt!("Some(%s)", t.to_str ())

}

}

}

15 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Default methods
A solution

� Sometimes you have a method that has a straightforward
“default”

� But want to be able to override it

16 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Default methods
A simple example: equality

trait Eq {

fn eq(&self , other: &Self) -> bool;

fn ne(&self , other: &Self) -> bool {

!self.eq(other)

}

}

17 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Default methods
An implementation without overriding

� Implementations can choose to use the default
implementation...

impl Eq for int {

fn eq(&self , other: &int) -> bool {

*self == *other

}

}

18 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Default methods
An implementation with overriding

� ... or to override it

impl Eq for int {

fn eq(&self , other: &int) -> bool {

*self == *other

}

fn ne(&self , other: &Self) -> bool {

*self != *other

}

}

19 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Default methods
Why override?

� Overriding can be useful for performance

� And is sometimes semantically necessary (the default
implementation is not correct for floating point)

20 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Default methods
Why override?

� Overriding can be useful for performance

� And is sometimes semantically necessary (the default
implementation is not correct for floating point)

20 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
The state at the start of the summer

� The above examples worked...

� But anything much more complicated didn’t

21 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
The state at the start of the summer

� The above examples worked...

� But anything much more complicated didn’t

21 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
Type parameters...

trait A<T> {

fn g(&self , x: T) -> T { x }

}

impl A<int > for int { }

fn main () {

assert !(0i.g(2i) == 2i);

}

� Triggered an ICE

� Need to mediate between the different type parameters...

22 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
Type parameters...

trait A<T> {

fn g(&self , x: T) -> T { x }

}

impl A<int > for int { }

fn main () {

assert !(0i.g(2i) == 2i);

}

� Triggered an ICE

� Need to mediate between the different type parameters...

22 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
Calling a default method from another one

trait Cat {

fn meow(&self) -> bool;

fn scratch (&self) -> bool { self.purr() }

fn purr(&self) -> bool { true }

}

� Triggered an ICE

23 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
And a bunch of related ones

� Calling a default method through a type parameters

� Packaging up an object with a default method

� Originally fixed by searching for default methods in more
cases

� Eventually fixed by reworking how method lookup is done
in trans

24 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
And a bunch of related ones

� Calling a default method through a type parameters

� Packaging up an object with a default method

� Originally fixed by searching for default methods in more
cases

� Eventually fixed by reworking how method lookup is done
in trans

24 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
And a bunch of related ones

� Calling a default method through a type parameters

� Packaging up an object with a default method

� Originally fixed by searching for default methods in more
cases

� Eventually fixed by reworking how method lookup is done
in trans

24 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
Cross-crate calls

� Couldn’t call default methods on a trait in another library

� Some false starts here - the library code is scary

� Solution is to properly export information about default
methods

� Required a major rework of what information we track
about impls

25 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
Cross-crate calls

� Couldn’t call default methods on a trait in another library

� Some false starts here - the library code is scary

� Solution is to properly export information about default
methods

� Required a major rework of what information we track
about impls

25 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
Cross-crate calls

� Couldn’t call default methods on a trait in another library

� Some false starts here - the library code is scary

� Solution is to properly export information about default
methods

� Required a major rework of what information we track
about impls

25 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
Cross-crate calls

� Couldn’t call default methods on a trait in another library

� Some false starts here - the library code is scary

� Solution is to properly export information about default
methods

� Required a major rework of what information we track
about impls

25 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
Interacting with trait bounds

� Trait bounds on a trait’s type params didn’t work

� Calling a function bounded over the trait didn’t work

26 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
Interacting with trait bounds

� Trait bounds on a trait’s type params didn’t work

� Calling a function bounded over the trait didn’t work

26 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
Supertraits

� Couldn’t call methods on a supertrait if there was any
polymorphism

� Major rework to how supertrait calls are handled

� Needed to actually check that an impl implemented
supertraits...

� Which required improving the trait resolution algorithm...

27 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
Supertraits

� Couldn’t call methods on a supertrait if there was any
polymorphism

� Major rework to how supertrait calls are handled

� Needed to actually check that an impl implemented
supertraits...

� Which required improving the trait resolution algorithm...

27 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
Supertraits

� Couldn’t call methods on a supertrait if there was any
polymorphism

� Major rework to how supertrait calls are handled

� Needed to actually check that an impl implemented
supertraits...

� Which required improving the trait resolution algorithm...

27 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Problems
Supertraits

� Couldn’t call methods on a supertrait if there was any
polymorphism

� Major rework to how supertrait calls are handled

� Needed to actually check that an impl implemented
supertraits...

� Which required improving the trait resolution algorithm...

27 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Other things
Other projects

� Improved the trait resolution algorithm, removing the
need for a hoky workaround in iterators

� Fixed some pattern matching codegen bugs

� Fixing some problems with objects and supertraits

28 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Other things
Fixed a lot of bugs

#2410, #3121, #4055, #4099, #4102, #4102, #4103,
#4350, #4396, #4946, #6554, #6868, #6909, #6959,
#6967, #7183, #7266, #7278, #7295, #7301, #7341,
#7460, #7481, #7536, #7569, #7571, #7661, #7675,

#7862

29 / 30

Introduction Rust Fixing Default Trait Methods Other Conclusion

Conclusion

� Rust is a new systems language out of Mozilla Research
that is designed to be fast, concurrent, and safe

� I worked on a bunch of different stuff on it this summer

� Default methods now work!

30 / 30

	Introduction
	Disclaimer
	Goals
	Rust

	Rust
	Design
	Status

	Fixing Default Trait Methods
	Traits
	Default methods
	Problems

	Other
	Other things

