INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

[e] 000 000 (e]e]
(e]e} (e]e] 00000
[e] 0000000

Default Methods in Rust

Michael Sullivan

August 14, 2013

o 0000000

Outline

Introduction
Rust
Fizing Default Trait Methods

Other

2/30

Disclaimer

3/30

o 0000000

Disclaimer

¢ Rust is under heavy development.

3/30

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

[] 000 000 [e]e)
00 [e]e] 00000
(e} 0000000

Disclaimer

¢ Rust is under heavy development.

e The things described in this talk may not be true
tomorrow.

FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

INTRODUCTION RuUST
[e]e]

o 000 000
(e]e} (e]e] 00000
[e] 0000000

Disclaimer

¢ Rust is under heavy development.

e The things described in this talk may not be true
tomorrow.

e What | discuss and how | present issues reflect my
personal biases in language design.

o 0000000

Goals
What do we want in a programming language?

4/30

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

(e} 000 000 [e]e)
[Jeo) [e]e] 00000
(e} 0000000

Goals

What do we want in a programming language?

o Fast: generates efficient machine code

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

(e} 000 000 [e]e)
[Jeo) [e]e] 00000
(e} 0000000

Goals

What do we want in a programming language?

o Fast: generates efficient machine code

o Safe: type system provides guarantees that prevent
certain bugs

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

[e] 000 000 (e]e]
[1o} (e]e] 00000
[e] 0000000

Goals
What do we want in a programming language?

o Fast: generates efficient machine code

o Safe: type system provides guarantees that prevent
certain bugs

o Concurrent: easy to build concurrent programs and to
take advantage of parallelism

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

[e] 000 000 (e]e]
[1o} (e]e] 00000
[e] 0000000

Goals
What do we want in a programming language?

Fast: generates efficient machine code

Safe: type system provides guarantees that prevent
certain bugs

o Concurrent: easy to build concurrent programs and to
take advantage of parallelism

“Systemsy": fine grained control, predictable performance
characteristics

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER

[e]
oe
[e]

000 000 (e]e]
(e]e] 00000
0000000

Goals
What do have?

o Firefox is in C++, which is Fast and Systemsy

CONCLUSION

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

(e} 000 000 [e]e)
oe [e]e] 00000
(e} 0000000

Goals

What do have?

o Firefox is in C++, which is Fast and Systemsy
e ML is (sometimes) fast and (very) safe

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

(e} 000 000 [e]e)
oe [e]e] 00000
(e} 0000000

Goals

What do have?

o Firefox is in C++, which is Fast and Systemsy
e ML is (sometimes) fast and (very) safe
e Erlang is safe and concurrent

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

[e] 000 000 (e]e]
oe (e]e] 00000
[e] 0000000

Goals
What do have?

Firefox is in C++, which is Fast and Systemsy

ML is (sometimes) fast and (very) safe

Erlang is safe and concurrent

Haskell is (sometimes) fast, (very) safe, and concurrent

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

[e] 000 000 (e]e]
oe (e]e] 00000
[e] 0000000

Goals
What do have?

Firefox is in C++, which is Fast and Systemsy

ML is (sometimes) fast and (very) safe

Erlang is safe and concurrent

Haskell is (sometimes) fast, (very) safe, and concurrent

Java and C# are fast and safe

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

(e} 000 000 [e]e)
00 [e]e] 00000
[] 0000000

Rust

a systems language

pursuing the trifecta

safe, concurrent, fast
-lkuper

Rust

Design
Status

7/30

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

[e] @00 000 (e]e]
(e]e} (e]e] 00000
[e] 0000000

Design
Type system features

Algebraic data type and pattern matching (no null
pointers!)

Polymorphism: functions and types can have generic type
parameters

Type inference on local variables

A somewhat idiosyncratic typeclass system (“traits”)

Data structures are immutable by default

e Region pointers allow safe pointers into non-heap objects

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

o] oeo 000 [e]e]
[e]e] [e]e) 00000
o] 0000000
Design
Other features

o Lightweight tasks with no shared state
o Control over memory allocation

e Move semantics, unique pointers

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

o] ooe 000 [e]e]
[e]e] [e]e) 00000
o] 0000000
Design
... What?

“It's like C++ grew up, went to grad school, started dating
Haskell, and is sharing an office with Erlang.”

o 0000000

Status
rustc

e Self-hosting rust compiler

11/30

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

[e] 000 000 (e]e]
(e]e} [Je] 00000
[e] 0000000

Status
rustc

¢ Self-hosting rust compiler
o Uses LLVM as a backend

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

o] 000 000 [e]e]
[e]e] [Jo} 00000
o] 0000000
Status
rustc

¢ Self-hosting rust compiler
e Uses LLVM as a backend

¢ Handles polymorphism and typeclasses by
monomorphizing

o 0000000

Status
The catch

o Not quite ready for prime time

12/30

[e]
(e]e}
[e]

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS
000 000
oe 00000
0000000
Status
The catch

o Not quite ready for prime time

e Lots of bugs and exposed sharp edges

OTHER
[e]e}

CONCLUSION

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

[e]
(e]e}
[e]

000 000 [e]e)
oe 00000
0000000
Status
The catch

o Not quite ready for prime time
e Lots of bugs and exposed sharp edges
e Language still evolving

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

(e} 000 000 [e]e)
00 oe 00000
(e} 0000000
Status
The catch

Not quite ready for prime time

Lots of bugs and exposed sharp edges

Language still evolving

But getting really close!

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

o] 000 000 [e]e]
[e]e] [e]e] 00000
o] 0000000

Traits

What are traits?

o Traits are interfaces that specify a set of methods for
types to implement

e Functions can be parameterized over types that
implement a certain trait

o Like typeclasses in Haskell

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

[e]
(e]e}
[e]

000 0eo [e]e]
[e]e] 00000
0000000
Traits

Trait example

trait ToStr {
fn to_str (&self) -> “str;
}
impl ToStr for int {
fn to_str(&self) -> “str { int::to_str(*self) 7}
}

fn exclaim<T: ToStr>(x: T) -> “str {
X.to_str() + ~"iv

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION
o 000 ooe oo

oo 00 00000

o 0000000

Traits
More trait example

impl<T: ToStr> ToStr for ~[T] {
fn to_str (&self) -> “str {
let strs = self.map(lx| x.to_str());
fmt ! (" [%s]", strs)

impl<T: ToStr> ToStr for Option<T> {
fn to_str (&self) -> “str {
match self {
&None => ""None'",
&Some (ref t) => fmt!("Some(¥%s)", t.to_str

INTRODUCTION RusT

FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION
o] 000 000 [e]e]
[e]e] [e]e) 00000
o] 0000000
Default methods
A solution

e Sometimes you have a method that has a straightforward
“default”

e But want to be able to override it

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS

OTHER
o 000 000 [e]e}
00 00 0®000
o 0000000

Default methods
A simple example: equality

trait Eq {

fn eq(&self, other: &Self) -> bool;
fn ne(&self, other: &Self) -> bool {

!'self.eq(other)
}

CONCLUSION

17 /30

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION
o 000 000 [e]e}

00 00 00000

o 0000000

Default methods
An implementation without overriding

e Implementations can choose to use the default
implementation...

impl Eq for int {
fn eq(&self, other: &int) -> bool {
*self == *other

}

INTRODUCTION RuUST FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

[e] 000 000 (e]e]
(e]e} (e]e] [ele]e] le}
[e] 0000000

Default methods
An implementation with overriding

e ... or to override it

impl Eq for int {
fn eq(&self, other: &int) -> bool {

*self == x*xother

¥

fn ne(&self, other: &Self) -> bool {
*self != xother

}

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS

OTHER CONCLUSION
o 000 000 [e]e}
00 00 0000e®
o 0000000

Default methods
Why override?

e Overriding can be useful for performance

o

30

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER
o 000 000 oo
oo 00 0000e®

o 0000000

CONCLUSION

Default methods
Why override?

e Overriding can be useful for performance

e And is sometimes semantically necessary (the default
implementation is not correct for floating point)

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS

OTHER CONCLUSION
o 000 000 [e]e}
00 00 00000
o ©000000
Problems

The state at the start of the summer

e The above examples worked...

INTRODUCTION RusT

FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION
o] 000 000 [e]e]
[e]e] [e]e) 00000
o] 0000000
Problems

The state at the start of the summer

e The above examples worked...

e But anything much more complicated didn't

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS

[e] 000 000
(e]e} (e]e] 00000
[e] 0@00000

Problems
Type parameters...

trait A<T> {

fn g(&self, x: T) -> T { x }
}
impl A<int> for int { }

fn main () {

assert!(0i.g(2i) == 2i);
}

o Triggered an ICE

OTHER
[e]e}

CONCLUSION

o
]

30

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

[e]
(e]e}
[e]

000 000 [e]e)
[e]e] 00000
0@00000
Problems

Type parameters...

trait A<T> {

fn g(&self, x: T) -> T { x }
}
impl A<int> for int { }

fn main () {
assert!(0i.g(2i) == 2i);
}
e Triggered an ICE

o Need to mediate between the different type parameters...

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER
o 000 000 oo

oo 00 00000

o 00@0000

CONCLUSION

Problems
Calling a default method from another one

trait Cat {
fn meow(&self) -> bool;

fn scratch(&self) -> bool { self.purr() }
fn purr (&self) -> bool { true }

e Triggered an ICE

23/30

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION
o 000 000 oo

oo 00 00000

o 000000

Problems
And a bunch of related ones

e Calling a default method through a type parameters
e Packaging up an object with a default method

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

(e} 000 000 [e]e)
00 [e]e] 00000
(e} 000@000

Problems

And a bunch of related ones

o Calling a default method through a type parameters
e Packaging up an object with a default method

e Originally fixed by searching for default methods in more
cases

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

(e} 000 000 [e]e)
00 [e]e] 00000
(e} 000@000

Problems

And a bunch of related ones

Calling a default method through a type parameters
Packaging up an object with a default method

Originally fixed by searching for default methods in more
cases

Eventually fixed by reworking how method lookup is done
in trans

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS

OTHER CONCLUSION
o 000 000 [e]e}
00 00 00000
o 0000800
Problems

Cross-crate calls

o Couldn’t call default methods on a trait in another library

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER

CONCLUSION
o 000 000 [e]e}
00 00 00000
o 0000800

Problems
Cross-crate calls

o Couldn’t call default methods on a trait in another library
e Some false starts here - the library code is scary

INTRODUCTION RusT

[e]
(e]e}
[e]

000
(e]e]

FIXING DEFAULT TRAIT METHODS OTHER

000 (e]e]
00000
0000e00

Problems
Cross-crate calls

CONCLUSION

o Couldn’t call default methods on a trait in another library

e Some false starts here - the library code is scary

» Solution is to properly export information about default

methods

INTRODUCTION

[e]
(e]e}
[e]

RusT
000
00

FIXING DEFAULT TRAIT METHODS OTHER

000 (e]e]
00000
0000e00

Problems
Cross-crate calls

CONCLUSION

Couldn’t call default methods on a trait in another library

Some false starts here - the library code is scary

Solution is to properly export information about default

methods

Required a major rework of what information we track

about impls

INTRODUCTION

RUST FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION
o 000 000 oo
oo 00 00000
o 0000080
Problems

Interacting with trait bounds

e Trait bounds on a trait's type params didn't work

o

30

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER

CONCLUSION
o 000 000 [e]e}
00 00 00000
o 0000080

Problems
Interacting with trait bounds

e Trait bounds on a trait's type params didn't work

e Calling a function bounded over the trait didn't work

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION
o 000 000 [e]e}
00 00 00000
o 000000®
Problems
Supertraits

e Couldn’t call methods on a supertrait if there was any
polymorphism

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER

CONCLUSION
o] 000 000 [e]e]
[e]e] [e]e] 00000
o] 000000e
Problems
Supertraits

e Couldn’t call methods on a supertrait if there was any
polymorphism

e Major rework to how supertrait calls are handled

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

o] 000 000 [e]e]
[e]e] [e]e) 00000
o] 000000
Problems
Supertraits

e Couldn’t call methods on a supertrait if there was any
polymorphism

e Major rework to how supertrait calls are handled

o Needed to actually check that an impl implemented
supertraits...

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

o] 000 000 [e]e]
[e]e] [e]e) 00000
o] 000000
Problems
Supertraits

Couldn’t call methods on a supertrait if there was any
polymorphism

Major rework to how supertrait calls are handled

Needed to actually check that an impl implemented
supertraits...

Which required improving the trait resolution algorithm...

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER

[e]
(e]e}
[e]

000 000 o0
(e]e] 00000
0000000

Other things
Other projects

o Improved the trait resolution algorithm, removing the
need for a hoky workaround in iterators

o Fixed some pattern matching codegen bugs

e Fixing some problems with objects and supertraits

CONCLUSION

INTRODUCTION RUST FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

[e] 000 000 oe
(e]e} (e]e] 00000
[e] 0000000

Other things
Fized a lot of bugs

42410, #3121, #4055, #4099, #4102, #4102, #4103,

#4350, #4396, #4946, #6554, #6868, #6909, #6959,

416967, #7183, #7266, #7278, 47295, #7301, #7341,

47460, #7481, #7536, #7569, #7571, #7661, #7675,
47862

29 /30

INTRODUCTION RusT FIXING DEFAULT TRAIT METHODS OTHER CONCLUSION

(e} 000 000 [e]e)
00 [e]e] 00000
(e} 0000000

Conclusion

o Rust is a new systems language out of Mozilla Research
that is designed to be fast, concurrent, and safe

e | worked on a bunch of different stuff on it this summer
e Default methods now work!

	Introduction
	Disclaimer
	Goals
	Rust

	Rust
	Design
	Status

	Fixing Default Trait Methods
	Traits
	Default methods
	Problems

	Other
	Other things

